关注官方微博:
| 金融之星 > 产经 > 科技 > - 正文

垂直行业AI怎么应用?AI的未来在哪?

2018-11-30 15:46 来源:互联网综合
金融之星 更多文章>>

  2018年11月27日-28日,第六届WISE大会——“WISE 2018新经济之王”如期而至。在WISE大会上,停简单CEO柳文超分享了他对停车行业长期存在的痛点、解决方案、以及未来市场潜力的思考。他认为,在大数据、云计算和政策利好的影响下,停车行业会迎来一次颠覆性的升级改造,而这背后蕴藏着巨大的市场空间。他预测,互联网停车的活跃用户将在约3年内达到亿级水平。

 

  垂直行业的AI应用有哪些难点?未来AI的窗口期有多久?AI的未来究竟会怎样?对于这些问题,触景无限联合创始人兼CEO肖洪波、深思考人工智能首席机器学习科学家王泳、麦飞科技联合创始人CEO宫华泽分享了他们的看法。

  垂直行业AI怎么样应用其中?

  垂直行业AI怎么样应用其中?垂直场景又有哪些难点?

  宫华泽认为,数据的价值对于整个农业耕种来说,垂直场景面临两点问题。第一点是数据采集的困难性;第二点是采集数据之后,面对的原数据与商业数据结合的切入点问题。

  王泳博士认为,在垂直的医疗和汽车场景下,多模态深度语义理解与人机交互技术可以应对不同的细分场景,满足行业的不同需求,提高效率。

  肖洪波认为,在安防领域,在传感器最前端去做智能的处理,可以降低网络压力,也可以用最原始的数据进行处理分析。

  宫华泽:麦飞科技是一家聚焦视觉光谱技术的智慧农业大数据服务商。目前我们正在打造一套符合中国农业的精准科学种植管理体系,实现对农作物生理状态的智能感知。基于这个核心技术,为所有种植者提供全套的种植管理服务。

  随着整个服务输出的不断积累、技术升级和市场推广,我们根据不同土地的种植规律和种植者需求,结合农田位置、边界、土质信息、稻种品类、播种方式等因素打造的农业大数据平台也在不断地精细化升级。

  目前为止,公司主要核心技术是包括从前端收集,数据分析,整理到信息输出的一套全流程解决方案,整体的对外商业模式是以全程农业技术输出业务为主。现在中国农业实际上是比较缺乏数据化基础的,依然靠经验传承,看天吃饭的方式来进行耕种。而我们走出国门,放眼看世界,例如美国、日本、还有自然条件比较恶劣的以色列,会发现他们是依靠采集和沉淀数据,再逐渐反哺整个种植过程,完成农业现代化基础的。

  数据的价值对于整个农业耕种来说,垂直场景面临两点问题。第一点是数据采集的困难性,这里涉及到一些IoT的东西,也涉及到数据的采集方式。第二点,当我们采集数据之后,将面对一个高信息维度的原数据,我们应该是以哪一个切入点去实现与商业数据结合?这一点就涉及到人工智能AI的算法,我们现在主要实现方式是利用一千多个通道的光谱探测器来抓取农作物不同阶段的高信息维度数据,也就是说我们实现抓取了太阳光的反射能量。后期我们会从一千多个原始的数据通道当中拆解出与植物生长最为相关的生理参数,也就是说我最懂得农作物需要什么,根据输出结果我们会量化出一个数据文件,将它提供给下游很多的服务智能平台,进而完成整套的植物保护过程。

  王泳:深思考人工智能的核心技术是多模态深度语义理解与人机交互,主要的产品是iDeepWise.AI 4.0,目前落地于智慧医疗大健康和智能汽车。

  首先,在智慧医疗大健康场景下我们做了两件事情,第一个是iDeepWise.AI 4.0在宫颈癌辅助筛查方面的场景落地,大家知道,宫颈癌是女性最高发的恶性肿瘤之一,每一位适龄女性都应该定期进行宫颈癌筛查,但与此同时,病理医师新生力量呈现“断崖式”短缺,国内医疗资源分布不平衡,相关医疗筛查产品准确率低等问题的出现,远远无法满足中国女性的医疗需求。在传统的检查中,需要病理医生将玻片放到显微镜下进行人眼判读,在阅片数量多,阅片压力大的情况下就容易导致误诊、漏诊的发生。我们所做的,就是通过“多模态深度语义理解”技术进行“排阴”,辅助病理医生阅片,病理医生只需要进行复核操作,从而提高宫颈癌筛查效率、降低病理医生筛查工作量及工作强度,快速达到降低误诊、漏诊。目前已经覆盖70%第三方检验机构市场,同时与30多家三甲医院建立合作。而另一件事情呢,则是我们“多模态深度语义理解与人机交互”技术在健康管理方面的落地,将我们的iDeepWise.AI 4.0产品接入手机、智能音箱、电饭煲等产品中,为消费者提供饮食建议、营养咨询、膳食制作等健康管理服务,这一方式也可以迁移到妇婴领域、慢性病、肿瘤等领域实现诊前诊后健康咨询,目前已与九阳等一系列上市公司进行合作。

  在智能汽车的场景下,我们的“多模态深度语义理解与人机交互”技术也是做了两件事情,第一件呢是在汽车智慧营销方面的落地,解决了传统汽车营销存在的留客难、客户体验差等问题,为客户带来全新的购车体验,同时iDeepWise.AI 4.0还可以为销售顾问、4S店长以及主机厂商决策层提供辅助决策的大数据分析,在提升访客体验的同时,持续改善销售体验,车辆生产制造提供良性循环的反馈。另一件事情则是针对于车内人机交互的场景,通过我们的“多模态深度语义理解与人机交互”技术实现车内外场景的理解,从而更加主动、更加智能地发现、满足人们的需求,极大地提高车内人机交互体验。通俗来讲便是车外模组对当前车辆所处的场景进行理解,提高驾驶的安全和舒适性,同时车内外模组的互相协作,车内模组通过多轮跨域上下文理解、场景理解与提醒等“多模态深度语义理解与人机交互”技术将交互模式调整为适应当前场景的状态,为用户提供最大化的“懂你”的交互体验升级。目前已与国内外多家汽车制造厂商和主机厂商进行合作。

  肖洪波:安防是人工智能目前落地最多的行业,也可以说人工智能深度学习最早进入安防。因为这领域运用到很多摄像头,有大量的图像,这些非结构化的数据,在很多场景里面需要对它进行结构化,结构化之后在这基础上再进行处理。但是之前大家所有的工作都是基于云端的处理比较多,就是说前端数据采集的部分和数据处理的部分是分离开的,这当然和我们最早的整个安防系统的架构有关系,就是说我们采集之后很多东西是要放到后端做存储,整个的传输压力其实非常大。比如说某省会城市,他们有七万只摄像头都是高清图像汇聚到数据中心来,几乎是不可能完成任务,所以有大量的数据丢失,包括分辨率的变化,我们触景做的工作是在传感器最前端去做智能的处理,这样一方面降低了它的网络压力,另一方面可以用最原始的数据来进行处理分析。在落地过程中,触景做了很多安防、司法以及学校项目。在司法领域,我们发现客户与一两年前比有一个比较大的差别,他们现在会非常主动地要去运用人工智能的技术解决实际过程中碰到的问题,比如触景在做的点名系统,客户一个小时要点四次名,因为他们是有强制要求的,这时候就需要非常简单易用的方式和它现有的系统进行无缝集成,不需要再去重新做部署,所以触景就花了半年的时间和他们一起磨合实现了一套非常理想的系统。

  未来AI的窗口期究竟有多久?

  现在有一个普遍的认知是,开源的技术效果都已经优化的不错,技术的代码也已经开放出来,市面上有几个声音是说未来AI的窗口期只有6到18个月,对于这个市场,肖洪波、泳先生、宫华泽分别谈了他们的看法。

必达财经

热点推荐

郑重声明:以上内容与金融之星立场无关。金融之星发布此内容的目的在于传播更多信息,金融之星对其观点、判断保持中立,不保证该内容(包括但不限于文字、数据及图表)全部或者部分内容的准确性、真实性、完整性、有效性、及时性、原创性等。相关内容不对各位读者构成任何投资建议,据此操作,风险自担。股市有风险,投资需谨慎。